IPIU 2019

Color Image Processing: From RGB to Hyperspectrum

Feb. 13, 2019 Byung-Uk Lee Department of Electronics Engineering, Ewha W. University, Seoul, KOREA

Contents

- A. RGB color image
- **B.** Color Histogram Equalization
- C. Hue preserving gamut mapping
- **D.** Color constancy
 - A. White balance
 - B. Color correction matrix
 - C. Estimation of illumination and reflectance

RGB Color image

f(x,y,1) Red

© Prof. BU Lee@Ewha W. Univ.

f(x,y,3) Blue

Additive Primaries: RGB

Mixture of Light Additive Primaries: RGB

The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype, Volume 40, Issue 13, 16 June 2000, Pages 1711–1737

https://commons.wikimedia.org/wiki/File: Normalized_Cone_Sensitivities.png

metamerism

Tristimulus value

Quantitative theory of colour by James Clark Maxwell

Three coloured disc for Maxwell's color mixing

Maxwell's original version of color triangle (Campbell & Garnett 1882)

Histogram Equalization – gray scale image

Histogram Equalization – Color image

CDF

The support region of input cdf (C_{in}) of each method

 $C_{out}(r_o, g_o, b_o) = (r_o + 1)(g_o + 1)(b_o + 1)/L^3 = C_{in}(r_i, g_i, b_i)$

such that $r_o - r_i = g_o - g_i = b_o - b_i$

[Trahanias 92]

The iso-luminance-plane method

$$C_{in}(r_i, g_i, b_i) = prob\{r + g + b \le (r_i + g_i + b_i)\}$$

= $\sum_{r+g+b \le (r_i + g_i + b_i)} p_{in}(r, g, b).$

Hue preserving gamut mapping with high saturation

Input Image

[Park 19]

Color Constancy

- Human vision compensates for color of illumination.
- Computational color constancy requires estimation of illuminants, and then correct for illumination spectrum.

Macbeth Chart under A light

White balance

- White balance: adjust color gain to compensate for the illumination.
- Illumination estimation
 - Gray-world assumption
 - The spatial average reflectance is achromatic.
 - White-patch assumption
 - The maximum response (the brightest pixel) is caused by a white patch.
 - Gray-edge assumption
 - Spatial derivative of an image is achromatic.

Hyperspectral Image

• RGB vs Hyperspectral Image

An RGB image and camera spectral sensitivity

Spectral sensitivity of a hyperspectral image

correlated

HSI application

- Material recognition (unmixing)
- Environment monitoring: heavy metal, vegetation, planktonic species
- Object detection
- Relighting
- Food inspection
- Old document restoration

Color correction matrix in RGB space

A hyperspectral image is a multiplication of illumination and reflectance, under Lambertian model.

 $D_{m \times n} = L_{m \times m} R_{m \times n}$ $D_{m \times n}$: hyperspectral image $R_{m \times n}$: reflectance $L_{m \times m}$: diagonal illumination m: the number of spectral channels, n: the number of pixels

An RGB image is a filtering of a hyperspectral image.

 $\mathbf{D}_3 = S\mathbf{D} = S\mathbf{L}\mathbf{R}, \mathbf{R}_3 = S\mathbf{R}$

D₃: RGB image obtained by a camera

S: camera sensor sensitivity

R₃: RGB reflectance

 $\mathbf{D}_3 = \mathbf{SLR} \cong \mathbf{MR}_3 = \mathbf{MSR}$

M: 3x3 illumination correction matrix

Illumination of an RGB image (**SLR**) can be obtained from RGB reflectance (**SR**) without error using a 3x3 correction matrix (**M**) if the rank of reflectance is not greater than 3.

$$SLR = MSR$$
, *if* $rank(R) \le 3$

Relation of CSS and illumination

• Illumination correction equation can be interpreted from a different perspective: CSS vector weighted by illumination is represented as a linear combination of the CSS.

 $\|SL - MS\|_F^2 = 0$

Relation of CSS and illumination

Illumination #	68	69
RMSE _{Mb}	0.0086	0.0382
CCT (K)	4279	4216

Two illuminants with similar CCT, but quite different color correction error.

Plot of SL and MB for illuminant 68

Plot of SL and MB for illuminant 69 [Lee 19]

Recovery of illumination and reflectance - RGB

[Lombardi 16]

- Bayesian approach
 - Reflectance: mixture of Gaussians
 - Illumination: exponential distribution

Color Constancy (RGB) - CNN

[Hu 17]

Illumination estimation from HSI

$$\mathbf{D}_{m \times n} = \mathbf{L}_{m \times m} \mathbf{R}_{m \times n} = \mathbf{L}_{m \times m} \mathbf{B}_{m \times k} \mathbf{C}_{k \times n}$$
$$\mathbf{D}_{m \times n}: \text{ hyperspectral image}$$
$$\mathbf{B}_{m \times k}: \text{ reflectance basis vector}$$
$$\mathbf{C}_{k \times n}: \text{ coefficients for reflectance}$$

Natural reflectance can be modeled as a low dimensional subspace, typically five to seven.

[Maloney 86]

Illumination estimation from HSI

Sushi image under incandescent lighting and estimated illumination spectrum

Fruit image under fluorescent lighting and estimated illumination spectrum

[Zheng 15] [이지원 17]

Paper image under pink lighting and estimated illumination spectrum

HSI from multiplexed illumination

[Park 07]

Figure 2. The spectra of the 5 types of LEDs (solid lines) and the spectral responses of the three color channels of the PointGrey Dragonfly Express camera (dashed lines) used in our system.

Observed Spectrum #2

HSI from everyday digital cameras

[Oh 16]

HSI from filtered images

[심규동 18]

HSI reflectance from a RGB image

[Fu 18]

- 1024 clusters
- number of samples per cluster is 400 or more
- Atoms in a dictionary is 20.

What's next?

- Non Lambertian reflectance
 - Specular components
 - Scattering (skin)
 - Translucent materials
 - Fluorescence
- More data acquisition
 - More than three channels
 - Use of NIR
 - Direct measurement of illumination

References

- Longair, Malcolm S. "Maxwell and the science of colour." *Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences* 366.1871 (2008): 1685-1696.
- Berns, Roy S. Billmeyer and Saltzman's principles of color technology. New York: Wiley, 2000.
- Yang, S., and B. Lee. "Hue-preserving gamut mapping with high saturation." Electronics Letters 49.19 (2013): 1221-1222.
- Naik, Sarif Kumar, and C. A. Murthy. "Hue-preserving color image enhancement without gamut problem." IEEE Transactions on Image Processing 12.12 (2003): 1591-1598.
- Trahanias, P. E., and A. N. Venetsanopoulos. "Color image enhancement through 3-D histogram equalization." 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis, IEEE, 1992.
- Han, Ji-Hee, Sejung Yang, and Byung-Uk Lee. "A novel 3-D color histogram equalization method with uniform 1-D gray scale histogram." IEEE Transactions on Image Processing 20.2 (2011): 506-512.
- Lee, Minji, and Lee, Byung-Uk, "Analysis of illumination correction error in camera color space," Color Imaging XXIV: Displaying, Processing, Hardcopy, and Applications, International Symposium on Electronic Imaging, IS&T, San Francisco, Jan 2019.
- A. Gijsenij, T. Gevers, and J. Van De Weijer, "Computational color constancy: Survey and experiments," IEEE Trans. on Image Process., 20(9): 2475-2489, 2011.
- J. von Kries, "Influence of adaptation on the effects produced by luminous stimuli," In D. L. Mac Adam, editor, Sources of Color Science, MIT Press, Cambridge MA, 109-119, 1971.
- J. van de Weijer, T. Gevers, A. Gijsenij, "Edge-based color constancy," IEEE Trans. on Image Process. 16(9): 2207-2214, 2007.
- G. D. Finlayson, M. S. Drew, and B. V. Funt, "Diagonal transforms suffice for color constancy," International Conference on Computer Vision (ICCV), 164-171, 1993.

- B. Funt and H. Jiang, "Nondiagonal color correction," International Conference on Image Conference (ICIP), 481-484, 2003.
- H. Y. Chong, S. J. Gortler, T. Zickler, "The von Kries hypothesis and a basis for color constancy," International Conference on Computer Vision (ICCV), 1-8, 2007.
- D. Cheng, B. Price, S. Cohen, M. S. Brown, "Beyond White: Ground Truth Colors for Color Constancy Correction," International Conference on Computer Vision (ICCV), 298-306, 2015.
- Y. Zheng, I. Sato, and Y. Sato, "Illumination and reflectance spectra separation of a hyperspectral image meets low-rank matrix factorization," CVPR, 1779-1787 (2015).
- L. T. Maloney, "Evaluation of linear models of surface spectral reflectance with small numbers of parameters," J. Opt. Soc. Am. A 3(10), 1673-1683 (1986).
- Wug Oh, Seoung, et al. "Do it yourself hyperspectral imaging with everyday digital cameras." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
- 심규동, 김창섭, 박종일, 컬러필터를 이용한 일상 조명에서의 멀티스펙트럴 이미징, IPIU 2018.
- Fu, Ying, et al. "Spectral Reflectance Recovery From a Single RGB Image." IEEE Transactions on Computational Imaging 4.3 (2018): 382-394.
- Lombardi, Stephen, and Ko Nishino. "Reflectance and illumination recovery in the wild." IEEE transactions on pattern analysis and machine intelligence 38.1 (2016): 129-141.
- Hu, Yuanming, Baoyuan Wang, and Stephen Lin. "FC4: Fully convolutional color constancy with confidenceweighted pooling." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'17). 2017.
- Park, J. I., Lee, M. H., Grossberg, M. D., & Nayar, S. K. (2007). Multispectral imaging using multiplexed illumination, ICCV 2007.
- 이지원, 초분광 영상에서의 조명 성분 추정, 이화여대 석사학위 논문, 2017. 2.
- Park, JH, and BU Lee, Enhancement of Color Saturation, Technical Report, 2019

Color image processing 연구 참여 졸업생

- 이희원 (MS 06), 박선희 (MS 07), 김윤아 (MS 10), 한지희 (MS 11), 강채린 (MS 13), 이지영 (MS 14), 이지원 (MS 17), 이민지 (MS 17), 하태형 (BS 18)
- 양세정 (PhD 11), 박준희 (PhD 12)

